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Abstract 

N=2 extended supergravity is discussed and an assessment is made of the 

problems encountered in applying it to the construction of phenomenologi- 

cal models of particle physics. A specific class of so-called no-scale models 

is discussed, in which the two supersymmetries are spontaneously broken in 

flat space-time, with naturally vanishing cosmological constant and the scale 

of supersymmetry breaking undetermined at the classical level. Supergravi- 

ty induced supersymmetry breaking generates effective mass terms for spin i 

components of the vector gauge multiplets and spin 0 components of the scalar 

matter multiplets. For finite globally supersymmetric models, this supersym- 

metry breaking preserves the finiteness. Possible connections of N=2 no-scale 

supergravity with superstrings and finite range antigravity are mentioned. 
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I. Introduction 

Supersymmetric field theories are attractive because they are less divergent than 

ordinary field theories. Due to so-called non-renormalization theorems, supersym- 

metric matter-gauge systems are free of quadratic divergences. This is in contrast 

with non-supersymmetric theories, where for example, the Higgs particles receive 

quadratically divergent radiative corrections. These corrections give rise to the 

naturalness problem for scalar fields; even if one starts with a small bare mass for 

scalars, they generate huge masses of the order of the cutoff of the theory, which is 

presumably the Planck mass, Mplanck w 1.2. 1019GeV. 

Since no mass-degenerate fermion-boson pairs have been observed so far, nature 

is not exactly supersymmetric. Hence construction of phenomenologically viable 

models must always involve introduction of supersymmetry breaking terms in the 

Lagrangian, preferably in a way so that quadratic divergences remain absent. The 

coupling of matter to supergravity provides a fundamental mechanism for generating 

such soft terms (for a review with an extensive list of references, see [l]). In order to 

induce spontaneous supersymmetry breaking in such models, one introduces a so- 

called hidden sector, which couples gravitationally to the known low-energy sector. 

This coupling gives rise to effective supersymmetry breaking terms for the low- 

energy sector. Using this mechanism many phenomenologically viable models have 

been constructed. A class of these models, the so-called no-scale models [2], has the 

interesting property that the scalar potential is identically equal to zero. In this 

way, the cosmological constant vanishes naturally, that is, without fine tuning of 

any parameters in the Lagrangian. The electro-weak scale is generated radiatively 

in this class of models. 
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The scenario presented above has been extensively studied within the frame- 

work of N=l supergravity. A natural question is whether it is possible to extend 

it to models with two supersymmetric charges [3] (see also [4] for some recent 

phenomenological applications of N=2 supersymmetry). For N=2 supersymmetric 

matter-gauge systems the non-renormalization theorems are much stronger. Except 

for a one loop beta function renormalization, the theory is finite. A careful choice of 

representations for the matter fields allows one to cancel even this divergence, and 

a completely finite theory can be obtained 151. Moreover it is possible to introduce 

explicit supersymmetry breaking terms that preserve the finiteness to all orders [6]. 

The problem of supersymmetry breaking in N=2 supergravity theories has been 

extensively studied before. The most important conclusion of these studies is that 

partial breaking from N=2 to N=l supersymmetry is impossible in Minkowski 

space-time [i’] (for a possible exception, see [S]). Therefore the two supersymmetries 

must be broken at one scale. An interesting class of models with such a property 

has been described by Cremmer et al. [9]. One couples a set of vector multiplets 

containing a vector field, two spin i fields and a complex scalar, to supergravity. 

The couplings of the fields are chosen so that the kinetic terms are not minimal and 

the potential for the scalar fields is completely flat, generalizing the no-scale N=l 

supergravity models. 

In this paper, we study models containing besides vector multiplets, also scalar 

multiplets consisting of spin i fields and complex scalar fields. We make extensive 

use of the formalism due to de Wit et al. [lo]. A subset of vector multiplets 

is introduced to generate supersymmetry breaking via the mechanism of a flat 

potential. Supersymmetry breaking in this sector feeds down to the rest of the 

theory to generate effective soft breaking terms. 
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Our work has been stimulated in part by the recent revival of interest in snti- 

gravity [ll], a gravitational strength repulsive force. Extended supergravities have 

the unique property of naturally incorporating the graviphoton, the spin 1 compo- 

nent of the supergravity multiplet, whose exchange may give rise to extremely feeble 

repulsive interactions. We address the question whether it is possible to generate a 

small mass for the graviphoton, necessary to give a finite range to its interactions. 

Another motivation for studying N=2 no-scale supergravity stems from the recent 

result in superstring theory, that N=l no-scale models naturally arise 1121 from 

superstring compactification on Calabi-Yau manifolds [13]. It is likely that N=2 

no-scale models emerge from alternative superstring compactifications. 

This paper is organized as follows. In section II, we give a presentation of 

the formalism of N=2 supergravity, in the formulation due to Cremmer et al. [9] 

and de Wit et al. [lo]. We derive formulas which are particularly important for 

phenomenological applications of N=2 supergravity. In section III, we study N=2 

no-scale models. We discuss the effects of supergravity induced supersymmetry 

breaking, in particular mass spectrum, low-energy effective Lagrangian and finite- 

ness. Finally, we conclude in section IV by discussing phenomenological prospects 

of N=2 extended supergravity. Notation and conventions are summarized in the 

Appendix. 

II. Physical content of gauged N=2 supergravity 

In this section we give a brief account of the structure of N=2 supergravity 

coupled to scalar and vector multiplets. The study of extended supergravity over 

several years has made it clear that the construction of the theory is most succinctly 
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derived, both in a conceptual and pragmatic sense, from the off-shell formulation of 

conformal supergravity. We will not dwell on the procedure of obtaining Poincare 

supergravity from conformal supergravity [l4]. It is, however, worth mentioning, 

that a set of gauge conditions, which result in the standard kinetic terms of Poinca& 

supergravity, combined with the elimination of auxiliary fields, yields a set of sigma- 

model type subsidiary conditions. The physical fields are defined as their solutions. 

The content of this section is essentially devoted to the presentation of the for- 

malism of N=2 supergravity [9,10], hopefully in a way accessible to non-experts. 

We derive formulas which are particularly important for phenomenological applica- 

tions. Unless explicitly stated, we work in units, in which the gravitational constant 

is equal to one, that is, Mpianck/fi = 1. 

II-A. Introductory remarks 

The physical degrees of freedom of N=2 supergravity coupled to vector and 

matter multiplets are the following. The only physical fields arising from the Weyl 

multiplet of conformal supergravity are the vierbein and two gravitinos @I, i = 1,2. 

One vector multiplet consists of one complex scalar X, two fermions n’ and one 

vector field W,,. One scalar multiplet consists of two complex scalars represented by 

the matrix &9, (I = 1,2, i = 1,2, and two fermions c”. Let us recall [3] that under 

global N=l supersymmetry, one N=2 vector multiplet decomposes into a vector 

multiplet and a chiral multiplet, whereas one N=2 scalar multiplet decomposes into 

two chiral multiplets. We refer the reader to the Appendix for a full explanation of 

the notation and conventions. 

The theory can accommodate an arbitrary number of scalar and vector mul- 
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tiplets. One (or one linear combination) of vector multiplets always acts as a 

compensating multiplet, and its vector field is supplied to the supergravity sector, 

transmuting itself into the graviphoton of the N=2 supergravity multiplet (2,$,!,1). 

After solving the aforementioned subsidiary conditions, the remaining components 

of the compensating multiplet become functions of the other fields, and effectively 

are eliminated from the physical spectrum. Also one scalar multiplet is eliminated 

in a similar way. The remaining scalar and vector multiplets represent the phys- 

ical degrees of freedom. In particular, the vector components of physical vector 

multiplets can gauge nonabelian as well as abelian groups. 

II-B. Constraints and kinetic energy terms 

Given the field content and the representation property under the gauge group, 

the theory is completely specified by the chiral density F(X’) - a holomorphic 

function of second degree, that is, F(XX’) = XrF(X’). The choice of the chiral 

density determines, among other things, the form of the kinetic terms for the scalar 

fields X’. Some choices which lead to non-minimal kinetic terms are of particular 

interest, since they give rise to flat potentials. This fact was found by Cremmer et 

al. [9] for gauged N=2 supergravity coupled to vector multiplets only. We will later 

find a generalization to the case which also includes scalar multiplets. 

Let us consider the case of n physical vector multiplets (X’ ,61” ,W,!) , I = 

1 ,...,n I and r physical scalar multiplets (Qg , <“) , a = 3,4,. . . ,2r + 2. We 

label the compensator and the unphysical scalar multiplet by I = 0 and a = 1,2 , 

respectively. As mentioned before, the requirement that conformal supergravity 

gives rise to the Einstein action yields a set of subsidiary conditions 19,101 on the 
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scalar fields: 

NIJX1siLJ = 1 , I,J=O,...,n 

Qgd,aQj=-2, cY,p = 1,2 ,...,2r+2 , 

where Qk = 89. The matrices N and d are given by: 

(2.1) 

N,J = i (F,J + PI;,) , (2.2) 

d = diag(-l,l,...,l) , (2.3) 

with 1 a unit 2 x 2 matrix and FIJ defined as the second derivative of F(X’) 

The scalar fields QaG , in addition, must satisfy a reality constraint: 

Q; = &,gQDj , (2.4) 

where p-p = p = diag(e,. . . , t) , and c is a 2 x 2 completely antisymmetric matrix, 

cl2 = 1. Let us write the (2r + 2) x 2 matrix QQi as: 

Q = (q’,...,d)- > (2.5) 

with each qp, p = 0,. . . , r , a 2 x 2 matrix. The transposition symbol N means here 

that Q should be considered as a column in the pindices, rather than a row. It is 

not difficult to see, that eq.(2.4) is implemented if one takes each element qp to be 

a quaternion: 

qp=~l+ip.z, (2.6) 

where 0’ are the usual Pauli matrices. Here qo and { are real coefficients. Another 

parametrization for the quaternions, more suitable for the discussion of the mirror 

symmetry of N=2 supergravity, will be given in the next subsection. 
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The reality constraint, eq.(2.4), must also be maintained under the gauge trans- 

formations: 

64p Y T’,, qp’ . (2.7) 

The matrix T must then be a quaternion valued (r + 1) x (r + 1) matrix. Given an 

antihermitean gauge group generator t acting on complex fields, one can explicitly 

construct T as: 

T=Ret@l+Imtc%c, (2.8) 

where 1 and c act on the 2 x 2 internal quaternionic degrees of freedom. Other forms 

of generators T, which act in a more complicated way on the internal quaternionic 

degrees of freedom, are also possible, nevertheless we restrict our attention to the 

simplest form of eq.(2.8). 

Matrices T can generate nonabelian as well as abelian gauge groups. When 

the generator T of an abelian group acts nontrivially on the first quaternion q’, 

eq.(2.5), it also gauges the SO(2) subgroup of the SU(2) automorphism of the 

supersymmetry algebra; we will return to this point later on. We always denote 

this group, associated with the graviphoton, by U(l)s, and its generator by TO. 

Eqs.(2.1) are solved explicitly by: 

p = pz ( z” E 1) , 

1X0/-’ E Y = z”N&, 

Q = c(Ld,...,q’)“, 

(2.9) 

(2.10) 

(2.11) 

(2.12) c-’ E 1- Tr{q+q}/2. 
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There is a similar set of conditions for fermions: 

1 

X’N,# = 0 I,J=O,...,n 
(2.13) 

Q”ad”a c@ = 0 , a,p= 1,2 ,..., 2r+2, 

which reduces the number of fermionic degrees of freedom. Eqs.(2.13) are solved 

by: 

nil = hiI _ NJKfiIxJAiK (AiOsO), (2.14) 

$” = Em + { QQ+ E 1” ( p E 0 ) . (2.15) 

The fermions A” and [” are now independent fields representing the gauginos and 

the physical matter fermions, respectively. 

The subsidiary conditions discussed so far do not exhaust the list of constraints 

one has to impose on the fields of N=2 supergravity. The Lagrangian, expressed in 

terms of the physical fields zl, A” (1 = 1,. . . ,n), and qg, 6” (a = 3,4,. . . ,2r + 2), 

defines a nonlinear sigma model [9,10], with the following non-canonical kinetic 

energy terms: 

,-kin = -~~~y-‘a,z’aV - &~,,iL$.f 

-c2 AuB c3rqiaPq’i - 2 Au& 3 tB I (2.16) 

where 

MII = -NIJ + (Nl~ZK)(N.d)Yml , (2.17) 

Aat3 = F-0 + c2 qqqia . (2.18) 

The physical field domains are restricted by the positivity requirement for Lain, 
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that is: 

Y >o, 2 > 0, 

M 13 , AUP positive definite. (2.19) 

II-C. Scalar potential 

Let us consider the case of a semi-simple gauge group which contains one non- 

abelian, and an arbitrary number of abelian factors. In this case, the scalar potential 

[lo] is given by: 

v = Vl + v, + v, , (2.20) 

VI = 2 (N-l)‘+{ Q’d (g,Tr) Q Q’d (S1T.r) Q > (2.21) 

vz = -4 Tr{ Q’d (g,T,)(gJTJ) Q} jLrXJ (2.22) 

V, = g2 NIJ f,; XKXL f,;: x”XN , (2.23) 

where g and f are the coupling constant and the structure constants, respectively, 

associated with the nonabelian group. For the abelian factors, the coupling con- 

stants gr correspond to the generators TI. We normalize the generators by: 

Tr{TITJ} = 2Tr{tltJ} = -61~. (2.24) 

For physical applications, it is useful to decompose a quaternion into two com- 

plex scalars. In general, quaternion valued fields which transform as the represen- 

tation R under the gauge group, are decomposed into the representation R @ i? for 
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complex fields. This decomposition can be readily done by the following projection: 

1 F iP Q*=-Q. (2.25) 

The action of the generator T = Re t @ 1+ Im t @ E on the projected components Q* 

is reduced to the action of t or its complex conjugate. More explicitly, by writing 

each quaternion qp in eq.(2.5) as: 

qP = + 

t 

zp + Yp is, - igp 
(2.26) 

izp - iy, izp + p IT 

one observes that z and y transform as R and x, respectively. The particle y is 

usually called a mirror partner of the particle z. In this way, the quaternionic matrix 

Q, eq.(2.11), which satisfies all previously mentioned constraints, is reexpressed in 

terms of the complex fields 

z=(l,Z)- ; y- (1,y’)“. (2.27) 

The normalization factor c of eq.(2.11) is given by: 

c-2 = 1 - I@/2 - ly’1”/2 . (2.28) 

Straightforwardcalculation allows us to reexpress the scalar potential V, eqs(2.20) 

(2.23), in terms of the physical complex fields. We obtain: 

Vl = -(N-‘)‘Jc4 [(AI - Cd (AJ - C,) + 4 131&l 

vz = -2csY-’ (ArJ + CIJ) z’,z? 

V, = gzYe2 NIJ fK,’ ZKZL fMN J Z”ZN , 

(2.29) 

(2.30) 

(2.31) 
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where 

AI = %g,t~dz (2.32) 

BI = ygrt~d x (2.33) 

CI = ygrtdji (2.34) 

AIJ = gIgJZ(trtJ +tJt~)dz (2.35) 

CIJ = .!WJ Y (tItJ + tJt1) dv . (2.36) 

The (r + 1) x (r + 1) dimensional matrix d is defined here as d = diag(-l,l,. . . , 1). 

Eqs.(2.29)-(2.31) describe the potential in various models which are special cases 

of the models considered here. For example, if we keep two quaternions (r = l), turn 

off the vector multiplets except for the compensator (n = 0), and set F(X’) = (X0)‘, 

goto u idaag(e,nm), we recover the potential of the model considered by Zachos 

[15]. On the other hand, if we turn off the scalar multiplets except for the unphysical 

one (7 = 0), and set gltr = ;gl/fi, we obtain the potential for the models studied 

by Cremmer et al. in section 3 of [9]. 

II-D. Yukawa couplings and supersymmetry breaking 

As discussed in the previous subsection, the spectrum of matter scalars exhibits 

a mirror symmetry, that is, for every scalar in a given representation of the gauge 

group there exists a mirror partner in the conjugate representation. The spectrum 

of matter fermions is also mirror-symmetric. By using CPT, this property of the 

fermion spectrum is often expressed as a left-right symmetry; namely, for every 

left-handed fermion there exists a right-handed partner in the same representation 
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of the gauge group. 

In order to display the mirror symmetry explicitly, we follow a procedure similar 

to the treatment of quaternions in the previous subsection. We write the fermion 

c”, in the representation R of the gauge group, as: 

s= (f”,...,fr)- 1 (2.37) 

witheach<P,p=O,..., r , a two-component column: 

<p = (2.38) 

The action of the gauge group generator T = Ret @ 1 + Im t @ c on c is reduced to 

the action oft and its complex conjugate on x and 7, respectively; x transforms as 

R, and its mirror partner q as E. 

The matter fermions < are subject to the subsidiary conditions of eqs.(2.13), 

therefore they should be expressed in terms of the physical fields 

(g”=90=0). 

By using eqs.(2.15) and (2.26), we obtain: 

(2.39) 

xp = fl+ +c’ [ xp (se + 99) + VP (ye - 85) ] (2.40) 

fl P = 8~ + $'I YP (%! + G) - Z,(ye - (9z)] . (2.41) 

We are interested in the part of the action .Cr, which contributes to the fermion 

mass matrices [lo]. It is given by: 

icy = yh jL* $~oPu& + iY,G .$+ . -ynj’ - 4X’ p . -yEj’e;j 
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+$J,$(N-‘)‘J~JKL tiKfljL + ig N,J f,,” Xx O”12iL~~j 

+16ix’ q”g’t’d Cx + 4 il”E:i’c;j + C.C. , (2.42) 

where the charge conjugation matrix C has been defined in the Appendix, eq.(A.7), 

and F’JK denotes the third derivative of the chiral density F(X’). The matrices 

J/,$ and the fermion fields Cf are defined below: 

Y’ = 2 [ ;y;, A:,;) 1 (2.43) 

C’ = c ( Zg,t,dx - qg,t,dQ , iyg,t,dx+iqg,t,dx) . (2.44) 

The first term in Lv, eq.(2.42), is the usual gravitino mass term, the next two are 

the gravitino-goldstino couplings, and the remaining ones are conventional Yukawa 

couplings of gauginos and matter fermions. Since the theory is uniquely specified 

by the gauge group and the chiral density, the list of Yukawa couplings is rather 

small. 

In the next section, we will be considering models with supersymmetry breaking 

in flat space-time, with zero cosmological constant. In order to determine whether 

supersymmetry is broken or not, one usually examines the action of supersymme- 

try transformations on the fermion fields. However, if one is interested in super- 

symmetry breaking with vanishing cosmological constant only, the part of the ac- 

tion contained in !Zv provides all information necessary to determine the gravitino 

masses and eventually, to identify the goldstino fields, whose degrees of freedom 

are absorbed by gravitinos through the super-Higgs mechanism. Gravitino mass 

generation is a necessary and sufficient condition for supersymmetry breaking in 
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Minkowski space-time. 

II-E. Graviphoton 

We will discuss here some properties of the graviphoton, the gauge boson of the 

U(l)o gauge symmetry, already mentioned in the previous subsection. Exchanges of 

graviphotons may give rise to antigravity forces, which are recently receiving some 

theoretical attention [ 111. 

We assume here that, of all the gauge group generators, only the generator TO 

of U(l)0 acts nontrivially on the compensating quaternion q”. We will consider a 

simple case given by: 

goTo = diag(eo,el,.. . ,e,) c3 E . (2.45) 

Generalization to other forms of the generator To is straightforward. 

The compensating quaternion ($)g = ~6; remains invariant under the following 

symmetry transformation: 

(Sq”)ai = CoEaB(qO)@i - eO(QO)ajcji = O ' (2.46) 

Eq.(2.46) implies that the graviphoton effectively gauges the diagonal combination 

of U(l)0 (acting on the indices a,@) and the SO(2) subgroup of the SU(2) auto- 

morphism of the supersymmetry charges (acting on the indices i, j). The relevant 

couplings of the graviphoton W,j‘ [lo] are contained in: 

f.0 = -Tr(D’Qt)d(D,Q) + iTr(QtdcpQ)(Qtd6,,Q) + fermion terms, (2.47) 

where 

(.D“Q)ai = a“QS + goW/(To)ap QB (2.48) 
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and the fermion terms include the matter fermions as well as the gauge fermions and 

the gravitinos, since the latter rotate under the SO(2) symmetry transformations. 

Suppose now that some scalar fields QP, p = 1,2,. , s , acquire non-zero vac- 

uum expectation values. Under the symmetry [U(l), @ SO(Z)]di.r these vacuum 

expectation values transform as: 

(2.49) 

where we used the reality constraint, eq.(2.4). We are interested in the criterion for 

zero graviphoton mass, that is vanishing of the right-hand side of eq.(2.49). Clearly, 

the right-hand side of eq.(2.49) is non-zero if ]ep] # /es/ for some p. The graviphoton 

may be massless only for the form of the generator Z’s corresponding to: 

lell = lezl = . . . = 1.~~1 = leOI . (2.50) 

The criterion for zero graviphoton mass corresponds then to the following condition 

on the scalar vacuum expectation values: 

(2.51) 

Indeed, by using eq.(2.47) one can easily check that the graviphoton mass is zero if 

and only if eqs.(2.50) and (2.51) are satisfied. 

It is important to note that the symmetry gauged by the graviphoton enters in 

the supersymmetry algebra in the form of a central charge [ 161. The supersymme- 

try algebra of conformal supergravity [10,14] contains some field-dependent gauge 

transformations: 

[~Q(Q),~Q(Q)] = 6~(-4X%:q! c;i + k.c.) + (2.52) 
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As already explained, in the procedure of deriving Poincare’ supergravity, X0 re- 

ceives a non-zero value, which generates a central charge. Therefore, the supersym- 

metry algebra acting on the gauge field W,j’ forces this central charge to be gauged. 

In this way, the graviphoton becomes the spin 1 component of the (2, $+, i, 1) super- 

gravity multiplet. 

III. No-scale models 

In this section, we first construct a simple model with a physical vector multiplet 

and a physical scalar multiplet, where the two supersymmetries are spontaneously 

broken in flat space-time and the scale of supersymmetry breaking remains undeter- 

mined at the classical level. This model enjoys the essential features of N=2 no-scale 

models with scalar multiplets in a simple way, and can be used as a so-called hidden 

sector in extended models with a more realistic particle content. Later, we pursue 

this idea to construct a class of models in which an extra gauge group is built into 

the theory, with physical fields assigned to some nontrivial representations. 

III-A. Flat potential 

Let us now come back to the expression for the potential, eqs.(2.29)-(2.31), and 

consider the case of n = I = 1, that is, one physical vector multiplet (z, Ai), and 

one physical scalar multiplet (z, y, Q, 0). We further demand that the potential 

possesses a minimum with a vanishing cosmological constant. 

An interesting case, which satisfies the above requirements, arises if we set: 

F(P,X’) = $(X1)3, goto = ~diag(l, 1) , gltl = 0 . (3.1) 
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This choice of the chiral density is motivated by [9], where a family of models which 

exhibit a vanishing potential has been constructed for the theory with vector mul- 

tiplets only; the above choice corresponds to the simplest possibility. The resultant 

potential is given by: 

V = 2e2c4Y-’ 1 z - $j 1’ (3.2) 

c-2 = 1 - ]z]s/2 - ]y]2/2 , Y = 2(Im2)3. (3.3) 

This potential is positive semi-definite and flat along the zero-value direction of 

5 = g. 

In the zero-energy vacuum corresponding to the scalar field configuration of 

z = g, the part of the action f.r, eq.(2.42), responsible for the gravitino masses and 

the gravitino-goldstino couplings, can be written as: 

LB, = -eY-‘i2 [$ + +i(Imz)2Y-‘/2P-y,] up” [q!jf - .?j(Imz)*Y-1/2y,Ai] . (3.4) 

From eq.(3.4) it follows that the two supersymmetries are spontaneously broken. 

By the super-Higgs mechanism, the two gravitinos absorb the physical degrees of 

freedom of the gauginos A’, acquiring equal masses of: 

m, = e(Imz)-3/2/h. (3.5) 

Since the vacuum expectation value of the scalar field z is arbitrary at the classical 

level, the gravitino masses, and hence the scale of supersymmetry breaking, remain 

undetermined in the classical approximation. Together with the natural vanishing 

of the cosmological constant, these are the characteristic features of the so-called 

no-scale models, which have been previously studied within the framework of N=l 

supergravity 121. 
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III-B. Model for N=2 no-scale supergravity 

We proceed now to the construction of a model which is general enough to 

allow incorporation of the physical fields in a nontrivial representation of a non- 

abelian gauge group. Eventually, after including radiative corrections, models of 

this type might serve as a starting point towards phenomenological applications of 

N=2 supergravity. The main purpose of this section is to analyse the effects of 

supersymmetry breaking on the spectrum of physical particles. 

The model under consideration is constructed by adding an extra SU(2) gauge 

group with its vector multiplet, and a scalar matter multiplet in the fundamental 

representation, to the U(l)0 @ U(1) r model of the previous subsection. The SU(2) 

group is being used here as a prototype of any physically interesting symmetries, 

like the grand-unified or the electro-weak ones. Generalization to other groups and 

matter representations is straightforward. The model is completely specified by the 

chiral density F. Motivated by the results of 191, we choose: 

IqXO,X1,2) = ; [(x1)3+ aXYP] , (34 

where X = X” are the gauge scalars in the adjoint representation of SU(2) and a 

is an arbitrary real negetive parameter, CI < 0. 

The generators of the U(l)0 ~3 U(l)1 8 SU(2) gauge transformations are defined 

below: 

g&J = ;&ag(l,l,O) ; !?lh = 0 ; gr= +g(O,O,cq . (3.7) 

The generators to, tl and z are block-diagonal, with the upper two blocks acting 

on the compensators and the hidden sector, respectively. The hidden sector con- 

tains the scalars z and y, and chiral fermions Q and 19, all SU(2) singlets. The 
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lower blocks of the gauge group generators, eq.(3.7), act on the observable sector 

of matter multiplets. This sector contains scalars ii and chiral fermions w’, in the 

fundamental representation of SU(2), and their mirror partners v’ and ?, in the 

conjugate representation. 

In the following calculations, we will need the matrix NIJ and its inverse, 

(N-i)IJ. The matrix N is easily calculated from the chiral density by using eq.(2.2). 

Inverting this matrix is somewhat tedious, therefore for completeness we list the re- 

sult below. Let us first introduce the following notation for the real and imaginary 

parts of the physical scalar components z and z’ of the vector multiplets: 

a= Rez, b = Imz, A” = Rez”, B” = Imz”. 

The matrix (N-‘)rJ is given by: 

s-1 as-’ i-s-1 

N-’ = ld-’ a2S-’ - b2T-1 &i-S-’ + bi+T-’ 

;iS-l a;iS-’ + bgT-’ 6°b(ab)-1 + A”A*S-’ - B”B*T-’ 
i 

, (3.8) 

with 

s = -;y = -b3- &jZ 

T = -3b3+abia . 

(3.9) 

(3.10) 

Before calculating the potential, let us note that the domains of physical fields 

are restricted by the positivity requirement for the kinetic energy terms, eqs.(2.19). 

For the model under consideration, they are: 

c -2 = 1 - IsI*/2 - ly12/2 - lii12/2 - lv’/2/2 > 0 , 

b > 0 b=+c& > 0. 

(3.11) 

(3.12) 
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The scalar potential is calculated by using eqs.(2.29)-(2.31). We obtain: 

V = e2V” + egV” + g2V”’ , (3.13) 

V = 2c4Y-‘Iz - g I2 + (1 - /21z/2 - [y/s/2) c’Y-’ ( lzi12 + liTI”) (3.14) 

V” = -2c4Y-‘[ tTAv’*(l - zy) + v’Aii(l - qj)] 

+c4Y-‘( 1~1~ - lyj’)(i?*AC- CAP) (3.15) 

V”’ = -c4(ab)-‘[ $( u”o% - W,‘)2 + (&“t7)( C’o”T)] 

-c4S-‘[ +(tTAii- v’Av”)‘+ (v’Aii)(CAi?)] 

+c4T-‘[ +( ii’Bu’- v’Bv”)2 + (tX’Bii)(u”BiT)] 

+C2Y-‘(i2 + g’)( lu’l* + ICI”) - abY-2( febeAbBC)2 , (3.16) 

where: 

A=i.Z, j3zg.a (3.17) 

The most interesting property of the potential V, eqs.(3.13)-(3.16), is that it 

exhibits a zero-value flat direction along the configuration of arbitrary fields z = & 

and an arbitrary field b, with ii = v’ = 0 and [A, B] = 0. From now on we restrict 

our attention to the SU(2) symmetric configuration of A = B = 0. It is easy 

to check that this flat direction corresponds to a local minimum of the potential, 

ensuring the existence of a zero-energy vacuum. Since the potential is unbounded 

from below, the vacuum may be unstable for large fluctuations of the scalar fields. 



-21- FERMILAB-Pub-86/86-T 

The study of this problem is beyond the scope of this investigation, therefore we 

assume here, that the tunnelling amplitude is small enough to justify perturbation 

theory around this zero-energy ground state. 

Let us discuss now the Yukawa part of the action, .C.C~, which gives rise to the 

fermion masses in the presence of non-zero vacuum expectation values of the scalar 

fields. By using eq.(2.42), we obtain: 

Lc~ = I!$ - ~ecub-2Y’IZ;i’“Ai’ - 8eczY-‘/z~“C19 + c.c., (3.18) 

where L1; is given in eq.(3.4). 

As in the simple model discussed before, the gravitinos acquire equal masses: 

m, = ebm312/& (3.19) 

and the scale of supersymmetry breaking is undetermined at the classical level. 

We are now in a position to determine the full mass spectrum of the model. The 

only ingredient, which remains to be calculated in order to obtain the masses, is 

the kinetic energy part of the Lagrangian, .f?ki”. From eq.(2.16), we obtain: 

,!Zkin = -+b;i’“zA; -4c28~,-C4a,Xa~Ls-c2a,iia’rl* 

+(x+y, u'-+v', e-29). (3.20) 

In eq.(3.20) we omitted the kinetic energy terms for the particles, which are ex- 

plicitly massless due to the form of the scalar potential, eqs.(3.13)-(3.16), and the 

Yukawaterms fZ~y, eq.(3.18), that is, all scalar components of the vector multiplets, 

and the matter fermions w’ and ?. Also, the kinetic terms for the goldstinos A’ have 

been suppressed, since by the standard lore of the super-Higgs mechanism, they 
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contribute to the gravitino mass term. 

By using eqs.(3.13)-(3.16), (3.18) and (3.20), one easily computes the mass spec- 

trum of the model under consideration. The masses of all particles turn out to 

be integer multiples of the gravitino mass. The hidden sector contains one Dirac 

fermion and one scalar, with masses equal to two gravitino masses, and due to the 

trough nature of the scalar potential, one massless dilaton. 

In the observable sector, the gauginos A’” of the SU(2) gauge group acquire 

masses equal to the gravitino mass. However, the most interesting effect of super- 

symmetry breaking is that it generates a mass splitting inside the scalar matter 

multiplets. The scalars u’ and v’ receive masses equal to the gravitino mass whereas 

their fermionic partners, w’ and r’, remain massless. Such a mass generation for 

scalars is well known in N=l supergravity, where it provides a starting point for 

the construction of some realistic models [l]. Our simple model provides the first 

example of such a mechanism in the framework of N=2 supergravity. A systematic 

study of mass matrices would be helpful to understand, to what extent such a mass 

pattern is general. We summarize the mass spectrum of particles with spin 0 and 

3 in the table below: 

Spin 0, i Mass Spectrum 

Spin 0 Mass Spin i Mass 
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We close this subsection with a couple of remarks on the U(l)0 @ U(l)1 gauge 

interactions. By construction, ti = 0, which means that U(l)1 is essentially decou- 

pled, playing a sort of auxiliary role. From eqs.(2.50) and (2.51) it follows that the 

U(l)c group remains unbroken for the vacuum expectation values of the scalar fields 

corresponding to the minimum of the potential V, eqs.(3.13)-(3.16). The massless 

graviphoton couples to matter with the coupling constant 

(3.21) 

which is proportional to the gravitino mass. 

III-C. Effective Lagrangian and finiteness 

In this subsection, we study in more detail the structure of the Lagrangian for 

the ‘observable’ SU(2) sector in the limit, where it decouples from the ‘hidden’ 

U(l)0 @ U(l)1 sector. As in the N=l supergravity case, the effective Lagrangian 

is expected to describe a globally supersymmetric Yang-Mills model, with possible 

soft supersymmetry breaking terms. Interaction between the hidden and observable 

sectors should be suppressed by factors of 0 (mp/M~lonck). 

In order to derive such an effective Lagrangian for the model under consideration, 

we make the following resealings: 

g + (-ab)‘/Q ; tip -+ (-ab)++ P 

{-L a -+ (-ah/Y)-‘/*{.i, 5) ; n’ + (-ab)-ll*i 

{?z,C} + c-‘{C,iT} ; {w’,?) -+ c-‘{G,?}) (3.22) 

where the scalar fields in the scaling factors should be understood as their vacuum 
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expectation values. 

After these resealings, it is straightforward to take the limit Mpronch -+ co, with 

m, kept constant. In this limit, there is indeed no interaction between the U(l)0 @ 

U(l)1 and SU(2) sectors of the model. The effective Lagrangian for the observable 

SU(2) sector is precisely given by the standard N=2 globally supersymmetric Yang- 

Mills Lagrangian. There are however some explicit supersymmetry breaking terms 

present. They are given by: 

lCse = -m,lI’aA’a - m;(lC12 + ICI”) - 2gm,( u’iiv” + G’AU’) . (3.23) 

Similarly to the case of spontaneously broken N=l supergravity, these terms are 

soft, in the sense that they do not generate quadratic divergences (6,171. 

In the context of N=2 supergravity, it is very interesting to consider a theory 

that would be finite without the soft breaking terms. For an SU(2) theory this 

would be a model analogous to the model considered in the previous subsection, 

but with four pairs of doublets u’,,v’,, n = 1,2,3,4, since then the beta function 

vanishes [5,6]. The generated soft terms are of the same form for each doublet. 

For further discussion, it is convenient to decompose the multiplets of N=2 

supersymmetry into the multiplets of N=l supersymmetry. The vector multiplet 

(A”, B”, A”, IV;) decomposes into the chiral multiplet (A”, Ba, Ato) in the adjoint 

representation of the gauge group, and the vector multiplet (Azo,W;). The scalar 

multiplet (G, C, w’, ?) decomposes into the chiral multiplets (C, w’) and (C, ?), in the 

fundamental representation and its conjugate, respectively. 

The results of [S] indicate that there are basically four different types of soft 

terms that preserve the finiteness of the theory: 
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(i) N=l supersymmetric mass terms, for example a supersymmetric mass term 

for the chiral multiplet in the adjoint representation: 

- m;jiOA1* - gmAa(Z&* + WZ) - igmB”(ii’a”v” - vb’ii) - mZ(;i2 + $‘) 

(3.24) 

(ii) A mass term for the gaugino, obtained by an SO(2) rotation of (3.24): 

- m;izOAz’ - gmA”(t7c+‘ii+ il’aV*) - igmB”(Wil- ~i’dv”) - m’(,i’ + ii2) 

(3.25) 

If the SO(2) subgroup of the SU(2) au omorphism of the supersymmetry al- t 

gebra is unbroken, as in the models studied in this section (more precisely, 

the unbroken group gauged by the graviphoton corresponds to [SO(2) @ 

U(l)c]dioll), this term must combine with the mass term (3.24) for the chi- 

ral multiplet in the adjoint representation, to form the combination: 

&, = -mbioAirr - 2gm(ii’Av” + GAG) - 2m2(i2 + i’“) (3.26) 

(iii) Terms of the form (i2 - g2), which break parity and are therefore absent in 

our model. 

(iv) Parity-conserving mass terms of the form: 

- c[&(c:, + Di) + pL;((Ci + Di)] + p2(i2 + Z2) (3.27) 
R 

Pi+& = P2 for each representation R, (3.28) 

where CR,R and DRs8 are the scalar components of chiral multiplets in the 

representations R and z, respectively. Due to the SO(2) symmetry, in the 
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model under consideration, (3.27) corresponds to: 

L‘v, = -p2[ l&l2 + lvfn12 - 2(AZ + i’)] (3.29) 

We notice that the supersymmetry breaking terms ~Z.ss, eq.(3.23), generated 

by N=2 supergravity, are equal to the sum /Zp, + L~.v,, eqs.(3.26) and (3.29), with 

m = p = m,. From the construction it is obvious, that this result holds not 

only for an SU(2) gauge group, but also for arbitrary gauge groups. We conclude 

therefore, that the soft breaking terms, induced by supergravity in a finite N=2 

supersymmetric Yang-Mills theory, preserve the finiteness of that theory. This 

shows that it is a meaningful procedure to demand a N=2 supersymmetric Yang- 

Mills theory to be finite, since at least its coupling to supergravity does not spoil 

the finiteness. Another way to generate some finiteness preserving terms is through 

a dimensional reduction from a higher dimensional theory [18]. This suggests that 

the no-scale models considered here correspond to some self-consistent superstring 

compactifications. 

IV. Conclusions and outlook 

In this paper, we discussed the N=2 extended supergravity theory, as formulated 

by Cremmer et al. [9] and de Wit et al. [lo]. We derived formulas which are 

particularly useful for phenomenological applications. We presented a specific class 

of the so-called no-scale models, which exhibit spontaneous supersymmetry breaking 

in flat space-time. In these models, the two supersymmetries are broken at one scale, 

undetermined at the classical level. The cosmological constant vanishes naturally 

in the classical Lagrangian, without fine tuning of any parameters. 
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We analysed the effective low-energy Lagrangian, in the limit Mploncl: + co, with 

m, kept constant. In the presence of supergravity induced supersymmetry breaking 

terms, the theory remains free of troublesome quadratic divergences. Moreover, it 

is possible to choose a representation content in such a way, that the model is finite 

in the presence of these soft breaking terms. 

Supergravity induced supersymmetry breaking generates effective mass terms 

for spin $ components of the vector gauge multiplets and spin 0 components of the 

scalar matter multiplets. In this way supergravity offers a mechanism for generat- 

ing phenomenologically desirable non-zero masses of squarks, sleptons and gauginos. 

On the other hand, phenomenologically viable models always involve spontaneous 

breaking of local gauge symmetries, like the electro-weak symmetry, by the vacuum 

expectation values of some scalar fields. In the presence of positive mass terms, it 

is very difficult to induce such vacuum expectation values, at least in the classi- 

cal approximation. This problem is common to all supergravity theories, including 

the N=l models. Due to N=2 supersymmetry, the models under consideration ex- 

hibit also a mirror symmetry, which is unwanted at low energies. The spectrum 

of fermions is left-right symmetric and Yukawa couplings are extremely restric- 

tive. The problems of gauge symmetry breaking, left-right symmetry breaking and 

fermion mass generation present therefore a serious challenge for model builders. 

The mechanism commonly employed to resolve the problem of gauge symmetry 

breaking in the framework of N=l supergravity is based on the observation that in 

some situations, after supersymmetry has been broken spontaneosly, the radiative 

corrections may be large enough to generate non-zero vacuum expectation values 

of some scalar fields [1,2]. Hence it is very important to analyse the radiative 

corrections to the N=2 supergravity action, in order to resolve the question whether 
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it is possible to radiatively induce spontaneous breaking of the gauge and mirror 

symmetries. It is a logical possibility, that radiative corrections also determine the 

gravitino masses of order of the electro-weak scale, therefore solving the naturalness 

problem. 

In spite of supersymmetry breaking, at the classical level the graviphoton re- 

mains massless. For the gravitino mass of order of the electro-weak scale, the 

graviphoton coupling constant e - m, /Mplnnek is very small, of order 10-r7. The 

assumption, that radiative corrections break the U(l)0 symmetry at a scale compa- 

rable to the electro-weak scale, leads to an interesting conjecture, that the gravipho- 

ton is very light, with a mass of order em, - lo-ceV. In this way, N=2 supergravity 

would give rise to extremely feeble antigravity forces, with a characteristic length 

scale of order 1 meter. 

Finally, we would like to comment on the possible connection of N=2 no-scale 

models with superstrings. If it were possible to obtain the N=2 no-scale models 

by superstring compactification from ten dimensions, this would provide a natural 

mechanismfor supersymmetry breaking, which is absent in the N=l case. Moreover, 

at least at the classical level, baryon number would be conserved for the simple 

reason that no superpotential is allowed, therefore the baryon number violating 

Yukawa couplings are absent. 
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Appendix: Conventions and spinor algebra 

The conventions used in this paper follow [9,10]. We list here the features most 

relevant to practical calculations. 

A convenient representation for the Dirac matrices is given by: 

i 

0 io’ 
r’= 

40’ 0 
74 = (A.11 

The matrices oJ‘” are defined as: 

@” = I 4 7’97” I 1 

(A.21 

(-4.3) 

Gravitinos, gauge fermions and matter fermions are represented by Weyl spinors, 

with respective chiralities determined by: 

75 tcl; = $1 , 75nj=n;, 75 s-a = $a . (A.4) 

Spinorial Lorentz indices are always suppressed. The indices ;,j, . . = 1,2 label 

representations of the SU(2) automorphism of the supersymmetry algebra. The 

indices I, J, . . . = 0, 1, . . . , n label the vector multiplets and the generators which 

they gauge. The indices CY, p, . . = 1,2,. . . ,2r + 2 label scalar multiplets; the gauge 

group may act on these indices. 

The indices of type m = o,p,. . . ; a, j,. . are raised and lowered by complex 
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conjugation, up to multiplication by rz; namely, for a generic fermion X, , 

A” G ~z(x,)* (m=cr,p ,...; i,j ,... ). (-4.5) 

Hence lowering or raising the indices of type m flips the chirality of a fermion. 

Eq.(A.5) implies the following property of the Dirac conjugation: 

X” = (X,)+-y, = @y-c ) (‘4.6) 

where the charge conjugation matrix C is given by: 

Under complex conjugation: 

pq* = x,x, . 

(A.7) 

P.8) 
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